Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
उत्तर
\[\int_0^\frac{\pi}{4} \cos^4 x \sin^3 x d x\]
\[ = \int_0^\frac{\pi}{4} \cos^4 x \sin x \left( 1 - \cos^2 x \right) dx\]
\[ = \int_0^\frac{\pi}{4} \cos^4 x \sin x dx - \int_0^\frac{\pi}{4} \cos^6 x \sin x dx\]
\[ = - \left[ \frac{\cos^5 x}{5} \right]_0^\frac{\pi}{4} + \left[ \frac{\cos^7 x}{7} \right]_0^\frac{\pi}{4} \]
\[ = \frac{- 1}{20\sqrt{2}} + \frac{1}{5} + \frac{1}{56\sqrt{2}} - \frac{1}{7}\]
\[ = \frac{- \sqrt{2}}{40} + \frac{2}{35} + \frac{\sqrt{2}}{112}\]
\[ = \frac{2}{35} - \frac{9\sqrt{2}}{560}\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Solve each of the following integral:
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
`int x^3/(x + 1)` is equal to ______.