Advertisements
Advertisements
प्रश्न
Solve each of the following integral:
उत्तर
\[\int_2^4 \frac{x}{x^2 + 1}dx\]
\[ = \frac{1}{2} \int_2^4 \frac{2x}{x^2 + 1}dx\]
\[ = \frac{1}{2} \times \left.\log\left( x^2 + 1 \right)\right|_2^4 ...................\left[ \int\frac{f'\left( x \right)}{f\left( x \right)}dx = \log f\left( x \right) + C \right]\]
\[ = \frac{1}{2}\left( \log17 - \log5 \right)\]
\[ = \frac{1}{2}\log\left( \frac{17}{5} \right) .............\left( \log a - \log b = \log\frac{a}{b} \right)\]
APPEARS IN
संबंधित प्रश्न
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Choose the correct alternative:
If n > 0, then Γ(n) is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: