Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 1, b = 2, f\left( x \right) = x^2 - 1, h = \frac{2 - 1}{n} = \frac{1}{n}\]
Therefore,
\[I = \int_1^2 \left( x^2 - 1 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 1 \right) + f\left( 1 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 1 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 1 - 1 \right) + \left( h^2 - 1 \right) + . . . . . . . . . . . . . . . + \left\{ \left( n - 1 \right)^2 h^2 - 1 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n - 1 + h^2 \left\{ 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n - 1 + h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} \right]\]
\[ = \lim_{n \to \infty} \frac{1}{n}\left[ n - 1 + \frac{\left( n - 1 \right)\left( 2n - 1 \right)}{6n} \right]\]
\[ = \lim_{n \to \infty} \left\{ 1 - \frac{1}{n} + \frac{1}{6}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) \right\}\]
\[ = 1 + \frac{1}{3} = \frac{4}{3}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate each of the following integral:
Write the coefficient a, b, c of which the value of the integral
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`