Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^a \sqrt{a^2 - x^2} d x . \]
\[Let\ x = a\ \sin\ t . Then\, dx = a\ \cos\ t\ dt\]
\[When\ x = 0, t = 0\ and\ x\ = a, t = \frac{\pi}{2}\]
\[ \therefore I = \int_0^a \sqrt{a^2 - x^2} d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \sqrt{\left( a^2 - a^2 \sin^2 t \right)} a \cos\ t\ d\ t\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} a^2 \cos^2 t\ dt\]
\[ \Rightarrow I = a^2 \int_0^\frac{\pi}{2} \frac{1 + \cos 2t}{2} dt\]
\[ \Rightarrow I = \frac{a^2}{2} \left[ t + \frac{\sin 2t}{2} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{a^2}{2}\left( \frac{\pi}{2} - 0 \right)\]
\[ \Rightarrow I = \frac{\pi^2}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.