Advertisements
Advertisements
प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
उत्तर
\[\int_a^b xf\left( x \right)dx\]
\[ = \int_a^b \left( a + b - x \right)f\left( a + b - x \right)dx ..................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_a^b \left( a + b - x \right)f\left( x \right)dx ..................\left[ f\left( a + b - x \right) = f\left( x \right) \right]\]
\[ \therefore \int_a^b xf\left( x \right)dx = \int_a^b \left( a + b \right)f\left( x \right)dx - \int_a^b xf\left( x \right)dx\]
\[\Rightarrow \int_a^b xf\left( x \right)dx + \int_a^b xf\left( x \right)dx = \left( a + b \right) \int_a^b f\left( x \right)dx\]
\[ \Rightarrow 2 \int_a^b xf\left( x \right)dx = \left( a + b \right) \int_a^b f\left( x \right)dx\]
\[ \Rightarrow \int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate the following integral:
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
If n > 0, then Γ(n) is
`int x^3/(x + 1)` is equal to ______.