Advertisements
Advertisements
प्रश्न
उत्तर
\[I = \int_0^\frac{\pi}{2} \cos^4 x \cos\ x\ d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( 1 - \sin^2 x \right)^2 \cos x\ dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( 1 - 2 \sin^2 x + \sin^4 x \right) \cos x dx \]
\[Let\ \sin x = t . Then, \cos dx = du\]
\[When\ x = 0, t = 0\ and\ x = \frac{\pi}{2}, t = 1\]
\[ \therefore I = \int_0^1 \left( 1 - 2 t^2 + t^4 \right) dt\]
\[ \Rightarrow I = \left[ t - \frac{2 t^3}{3} + \frac{t^5}{5} \right]_0^1 \]
\[ \Rightarrow I = 1 - \frac{2}{3} + \frac{1}{5}\]
\[ \Rightarrow I = \frac{8}{15}\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
`Γ (9/2)`