Advertisements
Advertisements
प्रश्न
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
उत्तर
\[I = \int e^{2x} \sin\left( 3x + 1 \right)dx\]
Applying integration by parts, taking
\[\sin\left( 3x + 1 \right)\] as first function and \[e^{2x}\]as second function, we get
\[I = \sin\left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d}{dx}\sin\left( 3x + 1 \right)\int e^{2x} dx \right]dx\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \int\left[ 3\cos\left( 3x + 1 \right)\frac{e^{2x}}{2} \right]dx\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\int e^{2x} \cos\left( 3x + 1 \right)dx\]
Again applying integration by parts, taking
\[I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left\{ \cos\left( 3x + 1 \right)\int e^{2x} dx - \int\left[ \frac{d}{dx}\cos\left( 3x + 1 \right)\int e^{2x} dx \right]dx \right\}\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left\{ \cos\left( 3x + 1 \right)\frac{e^{2x}}{2} - \int\left[ - 3\sin\left( 3x + 1 \right)\frac{e^{2x}}{2} \right]dx \right\}\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{2}\left[ \cos\left( 3x + 1 \right)\frac{e^{2x}}{2}dx + \frac{3}{2}\int e^{2x} \sin\left( 3x + 1 \right)dx \right]\]
\[ \Rightarrow I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} - \frac{9}{4}I + C\]
\[ \Rightarrow I + \frac{9}{4}I = \sin\left( 3x + 1 \right)\frac{e^{2x}}{2} - \frac{3}{4}\cos\left( 3x + 1 \right) e^{2x} + C\]
\[ \Rightarrow \frac{13}{4}I = \frac{e^{2x}}{4}\left[ 2\sin\left( 3x + 1 \right) - 3\cos\left( 3x + 1 \right) \right] + C\]
\[ \Rightarrow I = \frac{e^{2x}}{13}\left[ 2\sin\left( 3x + 1 \right) - 3\cos\left( 3x + 1 \right) \right] + K, \text { where } K = \frac{4}{13}C\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate each of the following integral:
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
Γ(4)
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int x^3/(x + 1)` is equal to ______.