हिंदी

2 ∫ 0 1 4 + X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

उत्तर

\[Let\ I = \int_0^2 \frac{1}{4 + x - x^2}\ d\ x\ . Then, \]
\[I = - \int_0^2 \frac{1}{x^2 - x - 4} d x\]
\[ \Rightarrow I = - \int_0^2 \frac{1}{\left( x^2 - x + \frac{1}{4} \right) - \frac{1}{4} - 4} d\ x\]
\[ = - \int_0^2 \frac{1}{\left( x - \frac{1}{2} \right)^2 - \frac{17}{4}} d x\]
\[ = - \int_0^2 \frac{1}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{\sqrt{17}}{2} \right)^2} d\ x\]
\[ = \int_0^2 \frac{1}{- \left( \frac{2x - 1}{2} \right)^2 + \left( \frac{\sqrt{17}}{2} \right)^2} d\ x\]
\[ = \frac{1}{\sqrt{17}} \left[ \log \left( \frac{\sqrt{17} + 2x - 1}{\sqrt{17} - 2x + 1} \right) \right]_0^2 \]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{\sqrt{17} + 3}{\sqrt{17} - 3} - \log \frac{\sqrt{17} - 1}{\sqrt{17} + 1} \right\}\]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{26 + 6\sqrt{17}}{8} - \log \frac{18 - 2\sqrt{17}}{16} \right\}\]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{52 + 12\sqrt{17}}{18 - 2\sqrt{17}} \right\}\]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{52 + 12\sqrt{17}}{18 - 2\sqrt{17}} \times \frac{18 + 2\sqrt{17}}{18 + 2\sqrt{17}} \right\}\]
\[ \Rightarrow I = \frac{1}{\sqrt{17}} \log \frac{1344 + 320\sqrt{17}}{256}\]
\[ \Rightarrow I = \frac{1}{\sqrt{17}} \log \frac{21 + 5\sqrt{17}}{4}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 39 | पृष्ठ १७

संबंधित प्रश्न

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int_0^2 2x\left[ x \right]dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Evaluate the following:

Γ(4)


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Choose the correct alternative:

Γ(n) is


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×