Advertisements
Advertisements
प्रश्न
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
उत्तर
We have,
\[\left| x^2 - 2x \right| = \begin{cases}- \left( x^2 - 2x \right),& 1 \leq x \leq 2\\ x^2 - 2x,& 2 \leq x \leq 3\end{cases}\]
\[ \therefore \int_1^3 \left| x^2 - 2x \right| d x\]
\[ = \int_1^2 - \left( x^2 - 2x \right) dx + \int_2^3 \left( x^2 - 2x \right) dx\]
\[ = \left[ - \frac{x^3}{3} + x^2 \right]_1^2 + \left[ \frac{x^3}{3} - x^2 \right]_2^3 \]
\[ = \frac{- 8}{3} + 4 + \frac{1}{3} - 1 + 9 - 9 - \frac{8}{3} + 4\]
= 2
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`