Advertisements
Advertisements
प्रश्न
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
उत्तर
\[f\left( x \right) = \int_0^x t\sin\ tdt\]
\[ \Rightarrow f\left( x \right) = \left.{t\left( - \cos t \right)}\right|_0^x - \int_0^x \frac{d}{dt}\left( t \right) \times \left( - \cos t \right)dt\]
\[ \Rightarrow f\left( x \right) = - \left( x\cos x - 0 \right) + \int_0^x \cos t dt\]
\[ \Rightarrow f\left( x \right) = - x\cos x + \left.\sin t\right|_0^x\]
\[ \Rightarrow f\left( x \right) = - x\cos x + \sin x\]
Differentiating both sides with respect to x, we get
\[f'\left( x \right) = - \left[ x \times \left( - \sin x \right) + \cos x \times 1 \right] + \cos x\]
\[ \Rightarrow f'\left( x \right) = - \left( - x\sin x \right) - \cos x + \cos x\]
\[ \Rightarrow f'\left( x \right) = x\sin x\]
Thus, the value of \[f'\left( x \right)\] is `x sinx`.
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.