हिंदी

If F ( X ) = ∫ X 0 T Sin T D T , the Write the Value of F ′ ( X ) - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]

योग

उत्तर

\[f\left( x \right) = \int_0^x t\sin\ tdt\]
\[ \Rightarrow f\left( x \right) = \left.{t\left( - \cos t \right)}\right|_0^x - \int_0^x \frac{d}{dt}\left( t \right) \times \left( - \cos t \right)dt\]
\[ \Rightarrow f\left( x \right) = - \left( x\cos x - 0 \right) + \int_0^x \cos t dt\]
\[ \Rightarrow f\left( x \right) = - x\cos x + \left.\sin t\right|_0^x\]

\[\Rightarrow f\left( x \right) = - x\cos x + \left( \sin x - 0 \right)\]
\[ \Rightarrow f\left( x \right) = - x\cos x + \sin x\]

Differentiating both sides with respect to x, we get

\[f'\left( x \right) = - \left[ x \times \left( - \sin x \right) + \cos x \times 1 \right] + \cos x\]
\[ \Rightarrow f'\left( x \right) = - \left( - x\sin x \right) - \cos x + \cos x\]
\[ \Rightarrow f'\left( x \right) = x\sin x\]

Thus, the value of \[f'\left( x \right)\] is `x sinx`.

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Very Short Answers [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Very Short Answers | Q 33 | पृष्ठ ११६

संबंधित प्रश्न

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×