Advertisements
Advertisements
प्रश्न
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
विकल्प
2(sinx + xcosθ) + C
2(sinx – xcosθ) + C
2(sinx + 2xcosθ) + C
2(sinx – 2x cosθ) + C
उत्तर
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to 2(sinx + xcosθ) + C.
Explanation:
Let I = `int (cos2x - cos 2theta)/(cosx - costheta) "d"x`
= `int ((2cos^2x - 1 - 2 cos^2theta + 1))/(cosx - costheta) "d"x`
= `2int ((cosx + cos theta)(cosx - costheta))/((cosx - costheta)) "d"x`
= `2int(cos x + cos theta) "d"x`
= 2(sinx + xcosθ) + C
APPEARS IN
संबंधित प्रश्न
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`