Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
उत्तर
Let I = `int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x` ......(i)
= `int_(- pi/4)^(pi/4) log|sin(pi/4 - pi/4 - x) + cos(pi/4 - pi/4 - x)|"d"x` ......`[because int_"a" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x]`
= `int_(- pi/4)^(pi/4) log|sin(-x) + cosx|"d"x`
= `int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x` ......(ii)
Adding (i) and (ii), we get
2I = `int_(-pi/4)^(pi/4) log|cosx + sinx|"d"x + int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x`
= `int_(-pi/4)^(pi/4) log|(cosx + sinx)(cosx - sinx)|"d"x`
= `int_(-pi/4)^(pi/4) log|cos^2x - sin^2x|"d"x`
∴ 2I = `int_(-pi/4)^(pi/4) log cos2x "d"x`
2I = `2 int_0^(pi/4) log cos 2x "d"x` .....`[because int_(-"a")^"a" "f"(x)"d"x = 2int_0^"a" "f"(x) "d"x "if" "f"(-x) = "f"(x)]`
∴ I = `int_0^(pi/4) log cos 2x "d"x`
Put 2x = t
⇒ dx = `"dt"//2`
Changing the limits we get
When x = 0
∴ t = 0
When x = `pi/4`
∴ t = `pi/2`
I = `1/2 int_0^(pi/2) log cos "t" "dt"` ......(iii)
I = `1/2 int_0^(pi/2) log cos (pi/2 - "t")"dt"`
I = `1/2 int_0^(pi/2) log sin "t" "dt"` ......(iv)
On adding (iii) and (iv), we get,
2I = `1/2 int_0^(pi/2) (log cos "t" + log sin "t")"dt"`
⇒ 2I = `1/2 int_0^(pi/2) log sin "t" cos "t" "dt"`
⇒ 2I = `1/2 int_0^(pi/2) (log 2 sin "t" cos "t")/2 "dt"`
⇒ 2I = `1/2 int_0^(pi/2) (log sin 2"t" - log 2) "dt"`
⇒ 4I = `int_0^(pi/2) log sin 2"t" "dt" - int_0^(pi/2) log 2 "dt"`
Put 2t = u
⇒ 2dt = du
⇒ dt = `"du"/2`
∴ 4I = `1/2 int_0^pi log sin "u" "du" - int_0^(pi/2) log 2 * "dt"`
⇒ 4I = `1/2 xx 2 int_0^(pi/2) log sin "u" "du" - log 2["t"]_0^(pi/2)`
⇒ 4I = `int_0^(pi/2) log sin "u" "du" - log 2 * pi/2`
⇒ 4I = `2"I" - pi/2 log 2` .....[From equation (ii)]
⇒ 2I = `- pi/2 log 2`
⇒ I = `pi/4 log 1/2`
∴ I = `pi/4 log 1/2`.
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : ∫ log (1 + x2) dx
`int_2^4 x/(x^2 + 1) "d"x` = ______
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Evaluate: `int_-1^1 x^17.cos^4x dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`