हिंदी

Evaluate the following: d∫-π4π4log|sinx+cosx|dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`

योग

उत्तर

Let I = `int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`  ......(i)

= `int_(- pi/4)^(pi/4) log|sin(pi/4 - pi/4 - x) + cos(pi/4 - pi/4 - x)|"d"x`  ......`[because int_"a" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x]`

= `int_(- pi/4)^(pi/4) log|sin(-x) + cosx|"d"x`

= `int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x` ......(ii)

Adding (i) and (ii), we get

2I = `int_(-pi/4)^(pi/4) log|cosx + sinx|"d"x + int_(-pi/4)^(pi/4) log|cosx - sinx|"d"x`

= `int_(-pi/4)^(pi/4) log|(cosx + sinx)(cosx - sinx)|"d"x`

= `int_(-pi/4)^(pi/4) log|cos^2x - sin^2x|"d"x`

∴ 2I = `int_(-pi/4)^(pi/4) log cos2x  "d"x`

2I = `2 int_0^(pi/4) log cos 2x  "d"x`  .....`[because int_(-"a")^"a" "f"(x)"d"x = 2int_0^"a" "f"(x) "d"x  "if"  "f"(-x) = "f"(x)]`

∴ I = `int_0^(pi/4) log cos 2x  "d"x`

Put 2x = t

⇒ dx = `"dt"//2`

Changing the limits we get

When x = 0

∴ t = 0

When x = `pi/4`

∴ t = `pi/2`

I = `1/2 int_0^(pi/2) log cos "t"  "dt"`  ......(iii)

I = `1/2 int_0^(pi/2) log cos (pi/2 - "t")"dt"`

I = `1/2 int_0^(pi/2) log sin "t"  "dt"`  ......(iv)

On adding (iii) and (iv), we get,

2I = `1/2 int_0^(pi/2) (log cos "t" + log sin "t")"dt"`

⇒ 2I = `1/2 int_0^(pi/2) log sin "t" cos "t"  "dt"`

⇒ 2I = `1/2 int_0^(pi/2) (log 2 sin "t" cos "t")/2 "dt"`

⇒ 2I = `1/2 int_0^(pi/2) (log sin 2"t" - log 2) "dt"`

⇒ 4I = `int_0^(pi/2) log sin 2"t"  "dt" - int_0^(pi/2) log 2  "dt"`

Put 2t = u

⇒ 2dt = du

⇒ dt = `"du"/2`

∴ 4I = `1/2 int_0^pi log sin "u"  "du" - int_0^(pi/2) log 2 * "dt"`

⇒ 4I = `1/2 xx 2 int_0^(pi/2) log sin "u"  "du" - log 2["t"]_0^(pi/2)`

⇒ 4I = `int_0^(pi/2) log sin "u"  "du" - log 2 * pi/2`

⇒ 4I = `2"I" - pi/2 log 2`  .....[From equation (ii)]

⇒ 2I = `- pi/2 log 2`

⇒ I = `pi/4 log  1/2`

∴ I = `pi/4 log  1/2`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 47 | पृष्ठ १६६

संबंधित प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate :  ∫ log (1 + x2) dx


`int_2^4 x/(x^2 + 1)  "d"x` = ______


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×