Advertisements
Advertisements
प्रश्न
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
उत्तर
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to e – 1.
Explanation:
Let I = `int_0^(pi/2) cos x "e"^(sinx) "d"x`
Put sin x = t
⇒ cos x "d"x` = dt
∴ I = `int_0^1 "e"^"t" "dt"`
= `["e"^"t"]_0^1`
= `"e"^1 - "e"^0`
= e – 1
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_0^9 1/(1 + sqrtx)` dx = ______
`int (dx)/(e^x + e^(-x))` is equal to ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`