हिंदी

Ed∫0π2 cosxesinx dx is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.

रिक्त स्थान भरें

उत्तर

`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to e – 1.

Explanation:

Let I = `int_0^(pi/2)  cos x "e"^(sinx)  "d"x` 

Put sin x = t

⇒ cos x "d"x` = dt

∴ I = `int_0^1 "e"^"t"  "dt"`

= `["e"^"t"]_0^1`

= `"e"^1 - "e"^0`

= e – 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 59 | पृष्ठ १६९

संबंधित प्रश्न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_0^9 1/(1 + sqrtx)` dx = ______ 


`int (dx)/(e^x + e^(-x))` is equal to ______.


`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×