Advertisements
Advertisements
प्रश्न
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
विकल्प
`2sqrt(2)`
`2(sqrt(2) + 1)`
2
`2(sqrt(2) - 1)`
उत्तर
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to `2(sqrt(2) - 1)`.
Explanation:
Let I = `int_0^(pi/2) sqrt(1 - sin2x) "d"x`
= `int_0^(pi/2) sqrt((sin^2x + cos^2x - 2 sinx cosx)) "d"x`
= `int_0^(pi/2) sqrt((sinx - cosx)^2) "d"x`
= `int_0^(pi/2) +- (sinx - cosx) "d"x`
= `int_0^(pi/4) - (sin x - cosx) "d"x + int_(pi/4)^(pi/2) (sinx - cosx) "dx`
= `int_0^(pi/4) (cosx - sinx) "d"x + int_(pi/4)^(pi/2) (sinx - cosx) "d"x`
= `[sinx + cosx]_0^(pi/4) + [- cosx - sinx]_(pi/4)^(pi/2)`
= `[(sin pi/4 + cos pi/4) - (sin0 - cos0)] - [(cos pi/2 + sin pi/2) - (cos pi/4 + sin pi/4)]`
= `[(1/sqrt(2) + 1/sqrt(2)) - (+ 1)] - [(0 + 1) - (1/sqrt(2) + 1/sqrt(2))]`
= `(2/sqrt(2) - 1) - (1 - 2/sqrt(2))`
= `2/sqrt(2) - 1 -1 + 2/(sqrt(2))`
= `4/sqrt(2) - 2`
= `2sqrt(2) - 2`
= `2(sqrt(2) - 1)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_0^pi x sin^2x dx` = ______
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
Evaluate: `int_(-1)^3 |x^3 - x|dx`
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`