हिंदी

D∫0π21-sin2x dx is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.

विकल्प

  • `2sqrt(2)`

  • `2(sqrt(2) + 1)`

  • 2

  • `2(sqrt(2) - 1)`

MCQ
रिक्त स्थान भरें

उत्तर

`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to `2(sqrt(2) - 1)`.

Explanation:

Let I = `int_0^(pi/2) sqrt(1 - sin2x)  "d"x`

= `int_0^(pi/2) sqrt((sin^2x + cos^2x - 2 sinx cosx))  "d"x`

= `int_0^(pi/2) sqrt((sinx - cosx)^2)  "d"x`

= `int_0^(pi/2) +- (sinx - cosx)  "d"x`

= `int_0^(pi/4) - (sin x - cosx)  "d"x + int_(pi/4)^(pi/2) (sinx - cosx)  "dx`

= `int_0^(pi/4) (cosx - sinx)  "d"x + int_(pi/4)^(pi/2) (sinx - cosx)  "d"x`

= `[sinx + cosx]_0^(pi/4) + [- cosx - sinx]_(pi/4)^(pi/2)`

= `[(sin  pi/4 + cos  pi/4) - (sin0 - cos0)] - [(cos  pi/2 + sin  pi/2) - (cos  pi/4 + sin  pi/4)]`

= `[(1/sqrt(2) + 1/sqrt(2)) - (+ 1)] - [(0 + 1) - (1/sqrt(2) + 1/sqrt(2))]`

= `(2/sqrt(2) - 1) - (1 - 2/sqrt(2))`

= `2/sqrt(2) - 1 -1 + 2/(sqrt(2))`

= `4/sqrt(2) - 2`

= `2sqrt(2) - 2`

= `2(sqrt(2) - 1)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 58 | पृष्ठ १६९

संबंधित प्रश्न

Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_0^pi x sin^2x dx` = ______ 


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


Evaluate: `int_(-1)^3 |x^3 - x|dx`


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×