Advertisements
Advertisements
प्रश्न
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
उत्तर
Let `I = int_ (2x+1)/((x^2+1)(x^2+4))dx`
Let `(2x+1)/((x^2+1)(x^2+4)) = (Ax + B)/(x^2 + 1) + (Cx + D)/(x^2 + 4)`
Getting A = `2/3, B = 1/3, C = (-2)/3, D = (-1)/3`
∴ `I = 2/3 int x/(x^2 + 1) dx + 1/3 int x/(x^2 + 1)dx + (- 2)/3 int (xdx)/(x^2 + 4) + (-1)/3 int dx/(x^2 + 4)`
= `1/3 log | x^2 + 1| + 1/3 tan^-1 x - 1/3 log | x^2 + 4| - 1/6 tan^-1 x/2 + C`.
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate : ∫ log (1 + x2) dx
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
`int_a^b f(x)dx` = ______.
`int_4^9 1/sqrt(x)dx` = ______.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate:
`int_0^1 |2x + 1|dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`