हिंदी

Find : ∫ 2 X + 1 ( X 2 + 1 ) ( X 2 + 4 ) D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.

योग

उत्तर

Let `I = int_  (2x+1)/((x^2+1)(x^2+4))dx` 

 

Let `(2x+1)/((x^2+1)(x^2+4)) = (Ax + B)/(x^2 + 1) + (Cx + D)/(x^2 + 4)`

 

Getting A = `2/3, B = 1/3, C = (-2)/3, D = (-1)/3`

∴ `I = 2/3 int x/(x^2 + 1) dx + 1/3 int x/(x^2 + 1)dx + (- 2)/3 int (xdx)/(x^2 + 4) + (-1)/3 int dx/(x^2 + 4)`

 

= `1/3 log | x^2 + 1| + 1/3 tan^-1 x - 1/3 log | x^2 + 4| - 1/6 tan^-1 x/2 + C`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) All India Set 1 E

संबंधित प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate :  ∫ log (1 + x2) dx


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_2^3 x/(x^2 - 1)` dx = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


`int_a^b f(x)dx` = ______.


`int_4^9 1/sqrt(x)dx` = ______.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Evaluate:

`int_0^1 |2x + 1|dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×