हिंदी

Evaluate : Int 1/Sqrt("X"^2 - 4"X" + 2) "Dx" - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`

योग

उत्तर

I =  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


`= int  "dx"/sqrt("x"^2 - 4"x" +4 - 2) `


`= int "dx"/sqrt(("x - 2")^2 -( sqrt 2)^2) "dx"`


`= "log" |("x"-2) + sqrt(("x - 2")^2 -( sqrt 2)^2)| + "c"`


`= "log" |("x"-2) + sqrt("x"^2 - 4"x" + 2)| + c`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (July)

APPEARS IN

संबंधित प्रश्न

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


`int_0^pi x sin^2x dx` = ______ 


`int_0^1 "e"^(5logx) "d"x` = ______.


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


`int (dx)/(e^x + e^(-x))` is equal to ______.


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×