हिंदी

Show that ∫0af(x)g(x)dx=2∫0af(x)dx if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.

योग

उत्तर

Let `I = int_0^a f(x) g(x) dx`

`= int_0^a f(a - x) [4 - g(a - x)] dx`

`= 4 int_0^a f(a - x) dx - int_0^a f(a - x) g (a - x)  dx`

Let a - x = t

⇒ - dx = dt

When x = 0, t = a

and x = a, t = 0

`I = -4 int_a^0 f (t) dt + int_a^0 f (t) g (t) dt`

`= 4 int_0^a f (t) dt - int_0^a f (t) g (t)  dt`

`= 4 int_0^a f (x) dx - int_0^a f (x)g (x) dx `

`= 4 int_0^a f (x) dx - I`

⇒ `2I = 4 int_0^a f (x) dx`

Hence, `I = 2 int_0^a f (x) dx`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.11 | Q 19 | पृष्ठ ३४७

संबंधित प्रश्न

 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_0^{pi/2} xsinx dx` = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^1 x tan^-1x  dx` = ______ 


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^pi x sin^2x dx` = ______ 


`int_0^9 1/(1 + sqrtx)` dx = ______ 


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×