Advertisements
Advertisements
प्रश्न
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
उत्तर
Let `I = int_0^a f(x) g(x) dx`
`= int_0^a f(a - x) [4 - g(a - x)] dx`
`= 4 int_0^a f(a - x) dx - int_0^a f(a - x) g (a - x) dx`
Let a - x = t
⇒ - dx = dt
When x = 0, t = a
and x = a, t = 0
`I = -4 int_a^0 f (t) dt + int_a^0 f (t) g (t) dt`
`= 4 int_0^a f (t) dt - int_0^a f (t) g (t) dt`
`= 4 int_0^a f (x) dx - int_0^a f (x)g (x) dx `
`= 4 int_0^a f (x) dx - I`
⇒ `2I = 4 int_0^a f (x) dx`
Hence, `I = 2 int_0^a f (x) dx`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_0^{pi/2} xsinx dx` = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^1 x tan^-1x dx` = ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^pi x sin^2x dx` = ______
`int_0^9 1/(1 + sqrtx)` dx = ______
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`