हिंदी

If ettdt∫01et1+tdt = a, then ettdt∫01et(1+t)2dt is equal to ______ - Mathematics

Advertisements
Advertisements

प्रश्न

If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.

विकल्प

  • `"a" - 1 + "e"/2`

  • `"a" + 1 - "e"/2`

  • `"a" - 1 - "e"/2`

  • `"a" + 1 + "e"/2`

MCQ
रिक्त स्थान भरें

उत्तर

If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to `"a" + 1 - "e"/2`.

Explanation:

Since I = `int_0^1 "e"^"t"/(1 + "t") "dt"`

= `|1/(1 + "t") "e"^"t"|_0^1 + int_0^1 "e"^"t"/(1 + "t")^2 "dt"` = a  ...(Given)

Therefore, `int_0^1 "e"^"t"/(1 + "t")^2 = "a" - "e"/2 + 1`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Solved Examples [पृष्ठ १६२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Solved Examples | Q 27 | पृष्ठ १६२

संबंधित प्रश्न

Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_1^2 1/(2x + 3)  dx` = ______


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Evaluate: `int_(-1)^3 |x^3 - x|dx`


`int_a^b f(x)dx` = ______.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×