Advertisements
Advertisements
प्रश्न
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
विकल्प
`"a" - 1 + "e"/2`
`"a" + 1 - "e"/2`
`"a" - 1 - "e"/2`
`"a" + 1 + "e"/2`
उत्तर
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to `"a" + 1 - "e"/2`.
Explanation:
Since I = `int_0^1 "e"^"t"/(1 + "t") "dt"`
= `|1/(1 + "t") "e"^"t"|_0^1 + int_0^1 "e"^"t"/(1 + "t")^2 "dt"` = a ...(Given)
Therefore, `int_0^1 "e"^"t"/(1 + "t")^2 = "a" - "e"/2 + 1`.
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
`int_1^2 1/(2x + 3) dx` = ______
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Evaluate: `int_(-1)^3 |x^3 - x|dx`
`int_a^b f(x)dx` = ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following definite intergral:
`int_1^3logx dx`