Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
उत्तर
Let f (x) = cos5 x
Now we have
f (2π - x) = (cos (2π - x))5
= (cos x)5 = cos5 x = f (x)
⇒ `I = 2 int_0^pi cos^5 x dx`
`[∵ int_0^(2a) f (x) dx = 2 int_0^a f (x)dx, if (2a - x) = f(x) = 0, if (2a - x) = -f(x)]`
Again, we have
f (π - x) = (cos (π - x))5 = -cos5 x = - f(x)
⇒ `2 int_0^pi cos^5 x dx = 0`
Hence, `int_0^(2pi) cos^5 x dx `
`= 2 int_0^5 cos^5 x dx `
= 2 × 0
= 0
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate : `intlogx/(1+logx)^2dx`
Evaluate : `intsec^nxtanxdx`
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_1^2 1/(2x + 3) dx` = ______
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_0^1 (1 - x)^5`dx = ______.
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
`int_4^9 1/sqrt(x)dx` = ______.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`