Advertisements
Advertisements
प्रश्न
Evaluate:
`int_0^6 |x + 3|dx`
उत्तर
Let I = `int_0^6 |x + 3|dx`
As, 0 ≤ x ≤ 6
`\implies` – 3 ≤ x + 3 ≤ 9
x + 3 > 0
`\implies` |x + 3| = |x + 3|
∴ `int_0^6 |x + 3|dx = int_0^6 (x + 3)dx`
= `[x^2/2 + 3x]_0^6`
= `(6^2/2 + 3 xx 6) - 0`
= 18 + 18
= 36
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^pi x*sin x*cos^4x "d"x` = ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`