हिंदी

Evaluate: ∫06|x+3|dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate:

`int_0^6 |x + 3|dx`

योग

उत्तर

Let I = `int_0^6 |x + 3|dx`

As, 0 ≤ x ≤ 6

`\implies` – 3 ≤ x + 3 ≤ 9

x + 3 > 0

`\implies` |x + 3| = |x + 3|

∴ `int_0^6 |x + 3|dx = int_0^6 (x + 3)dx`

= `[x^2/2 + 3x]_0^6`

= `(6^2/2 + 3 xx 6) - 0`

= 18 + 18

= 36

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (February) Official

संबंधित प्रश्न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×