Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
उत्तर
`int_2^8 abs (x - 5) dx`
Define,
`abs(x - 5) = {(-(x - 5), if x - 5 < 0, or x< 5),(x - 5, if x - 5 >= 0, or x >=5):}`
`= int_2^5 abs (x - 5) dx + int_2^8 abs (x - 5) dx`
`= - int_2^5 (x - 5) dx + int_2^8 (x - 5) dx`
`= - [x^2/2 - 5x]_2^5 + [x^2/2 - 5x]_5^8`
`= - [25/2 - 25 - 4/2 + 10]`
`= [64/2 - 4 - 25/2 + 25]`
`= - [(-9)/2] + [9/2]`
`= 9/2 + 9/2`
= 9
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate`int (1)/(x(3+log x))dx`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
`int_"a"^"b" "f"(x) "d"x` = ______
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^{pi/2} log(tanx)dx` = ______
`int_2^3 x/(x^2 - 1)` dx = ______
`int_-9^9 x^3/(4 - x^2)` dx = ______
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_0^pi x*sin x*cos^4x "d"x` = ______.
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
Evaluate: `int_(-1)^3 |x^3 - x|dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
`int_0^1|3x - 1|dx` equals ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`