हिंदी

Aafd∫-aaf(x)dx = 0 if f is an ______ function. - Mathematics

Advertisements
Advertisements

प्रश्न

`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.

रिक्त स्थान भरें

उत्तर

`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an Odd function.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Solved Examples [पृष्ठ १६३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Solved Examples | Q 30 | पृष्ठ १६३

संबंधित प्रश्न

If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_2^3 x/(x^2 - 1)` dx = ______


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_0^1 (1 - x)^5`dx = ______.


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


Which of the following is true?


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


`int_a^b f(x)dx` = ______.


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×