हिंदी

Assertion (A): ∫2810-xx+10-xdx = 3. Reason (R): ∫abf(x)dx=∫abf(a+b-x)dx. - Mathematics

Advertisements
Advertisements

प्रश्न

Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.

विकल्प

  • Both (A) and (R) are true and (R) is the correct explanation of (A).

  • Both (A) and (R) are true, but (R) is not the correct explanation of (A).

  • (A) is true, but (R) is false.

  • (A) is false, but (R) is true.

MCQ

उत्तर

Both (A) and (R) are true and (R) is the correct explanation of (A).

Explanation:

I = `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx`  ...(i)

Using property of definite integral

`int_a^b f(x) dx = int_a^b f(a + b - x) dx`

I = `int_2^8 sqrt(x)/(sqrt(10 - x) + sqrt(x))dx`  ...(ii)

Adding equations (i) and (ii)

2I = `int_2^8 (sqrt(10 - x) + sqrt(x))/(sqrt(10 - x) + sqrt(x))dx`

= `int_2^8 dx`

= `[x]_2^8`

= 8 – 2

= 6

`\implies` I = 3

R is also true as the property P4 is

`int_a^b f(x)dx = int_a^b f(a + b - x)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Delhi Set 1

संबंधित प्रश्न

Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_2^3 x/(x^2 - 1)` dx = ______


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×