Advertisements
Advertisements
प्रश्न
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
विकल्प
Both (A) and (R) are true and (R) is the correct explanation of (A).
Both (A) and (R) are true, but (R) is not the correct explanation of (A).
(A) is true, but (R) is false.
(A) is false, but (R) is true.
उत्तर
Both (A) and (R) are true and (R) is the correct explanation of (A).
Explanation:
I = `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` ...(i)
Using property of definite integral
`int_a^b f(x) dx = int_a^b f(a + b - x) dx`
I = `int_2^8 sqrt(x)/(sqrt(10 - x) + sqrt(x))dx` ...(ii)
Adding equations (i) and (ii)
2I = `int_2^8 (sqrt(10 - x) + sqrt(x))/(sqrt(10 - x) + sqrt(x))dx`
= `int_2^8 dx`
= `[x]_2^8`
= 8 – 2
= 6
`\implies` I = 3
R is also true as the property P4 is
`int_a^b f(x)dx = int_a^b f(a + b - x)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_2^3 x/(x^2 - 1)` dx = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`