Advertisements
Advertisements
Question
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Options
Both (A) and (R) are true and (R) is the correct explanation of (A).
Both (A) and (R) are true, but (R) is not the correct explanation of (A).
(A) is true, but (R) is false.
(A) is false, but (R) is true.
Solution
Both (A) and (R) are true and (R) is the correct explanation of (A).
Explanation:
I = `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` ...(i)
Using property of definite integral
`int_a^b f(x) dx = int_a^b f(a + b - x) dx`
I = `int_2^8 sqrt(x)/(sqrt(10 - x) + sqrt(x))dx` ...(ii)
Adding equations (i) and (ii)
2I = `int_2^8 (sqrt(10 - x) + sqrt(x))/(sqrt(10 - x) + sqrt(x))dx`
= `int_2^8 dx`
= `[x]_2^8`
= 8 – 2
= 6
`\implies` I = 3
R is also true as the property P4 is
`int_a^b f(x)dx = int_a^b f(a + b - x)`
APPEARS IN
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_0^{pi/2} cos^2x dx` = ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
`int_0^1 1/(2x + 5) dx` = ______.
`int_a^b f(x)dx` = ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`