English

Assertion (A): ∫2810-xx+10-xdx = 3. Reason (R): ∫abf(x)dx=∫abf(a+b-x)dx. - Mathematics

Advertisements
Advertisements

Question

Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.

Options

  • Both (A) and (R) are true and (R) is the correct explanation of (A).

  • Both (A) and (R) are true, but (R) is not the correct explanation of (A).

  • (A) is true, but (R) is false.

  • (A) is false, but (R) is true.

MCQ

Solution

Both (A) and (R) are true and (R) is the correct explanation of (A).

Explanation:

I = `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx`  ...(i)

Using property of definite integral

`int_a^b f(x) dx = int_a^b f(a + b - x) dx`

I = `int_2^8 sqrt(x)/(sqrt(10 - x) + sqrt(x))dx`  ...(ii)

Adding equations (i) and (ii)

2I = `int_2^8 (sqrt(10 - x) + sqrt(x))/(sqrt(10 - x) + sqrt(x))dx`

= `int_2^8 dx`

= `[x]_2^8`

= 8 – 2

= 6

`\implies` I = 3

R is also true as the property P4 is

`int_a^b f(x)dx = int_a^b f(a + b - x)`

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Delhi Set 1

RELATED QUESTIONS

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate = `int (tan x)/(sec x + tan x)` . dx


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_0^{pi/2} cos^2x  dx` = ______ 


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^1 log(1/x - 1) "dx"` = ______.


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


`int_0^1 1/(2x + 5) dx` = ______.


`int_a^b f(x)dx` = ______.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×