English

Evaluate : Int 1/("X" ("Log X")^2 + 4) "Dx" - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`

Sum

Solution

Let I = `int 1/("x" [("log x")^2 + 4])  "dx"`

Put log x = t

Differentiating w.r.t.x 

`1/"x" "dx" = "dt"`

`therefore "I" = int 1/("t"^2 + 4)  "dt"`


`therefore "I" = int 1/("t"^2 + (2)^2) "dt"`


`= 1/2 "tan"^(-1)("t"/2) + c`


By using `int 1/("x"^2 + "a"^2) "dx" = 1/"a" "tan"^(-1) ("x"/"a") + "c"`


∴ I = `1/2 "tan"^(-1) ("log x"/2) + "c"`

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (July) Set 1

APPEARS IN

RELATED QUESTIONS

Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate :  ∫ log (1 + x2) dx


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


`int_0^2 e^x dx` = ______.


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


`int_a^b f(x)dx` = ______.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate:

`int_0^6 |x + 3|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×