Advertisements
Advertisements
प्रश्न
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
उत्तर
Let I = `int 1/("x" [("log x")^2 + 4]) "dx"`
Put log x = t
Differentiating w.r.t.x
`1/"x" "dx" = "dt"`
`therefore "I" = int 1/("t"^2 + 4) "dt"`
`therefore "I" = int 1/("t"^2 + (2)^2) "dt"`
`= 1/2 "tan"^(-1)("t"/2) + c`
By using `int 1/("x"^2 + "a"^2) "dx" = 1/"a" "tan"^(-1) ("x"/"a") + "c"`
∴ I = `1/2 "tan"^(-1) ("log x"/2) + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Find `dy/dx, if y = cos^-1 ( sin 5x)`
`int_0^1 "e"^(2x) "d"x` = ______
`int_1^2 1/(2x + 3) dx` = ______
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
`int_0^{pi/2} cos^2x dx` = ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^pi x sin^2x dx` = ______
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
`int_0^1 1/(2x + 5) dx` = ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
`int_1^2 x logx dx`= ______
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`