हिंदी

∫0112x+5dx = ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int_0^1 1/(2x + 5) dx` = ______.

विकल्प

  • `1/2` log `7/5`

  • `1/2` log `5/7`

  • log `7/5`

  • `1/4` log `7/5`

MCQ
रिक्त स्थान भरें

उत्तर

`int_0^1 1/(2x + 5) dx` = `bb(underline(1/2 log  7/5))`.

Explanation:

⇒ 2x + 5 = t

⇒ 2dx = dt

⇒ dx = `1/2`dt

⇒ `int_5^7 1/2 (dt)/t`

⇒ `1/2 (logt)_5^7`

⇒ `1/2 [log7 - log5]`

⇒ `(log7 - log5)/2`

⇒ `1/2 [log 7 - log 5]`

⇒ `1/2 log  7/5`   .....`[log m - log n = log  m/n]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (March) Model set 2 by shaalaa.com

संबंधित प्रश्न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_1^2 1/(2x + 3)  dx` = ______


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


`int_0^9 1/(1 + sqrtx)` dx = ______ 


Which of the following is true?


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


`int (dx)/(e^x + e^(-x))` is equal to ______.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Solve the following.

`int_1^3 x^2 logx  dx`


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×