हिंदी

∫abf(x)dx=∫abf(x-a-b)dx. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:

`int_b^a f(x)dx = int_b^a f(a + b - x)dx`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (March) Model set 2 by shaalaa.com

संबंधित प्रश्न

Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


`int_2^4 x/(x^2 + 1)  "d"x` = ______


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^{pi/2} log(tanx)dx` = ______


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


Which of the following is true?


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


`int_0^1 1/(2x + 5) dx` = ______.


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


`int_1^2 x logx  dx`= ______


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×