Advertisements
Advertisements
प्रश्न
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
उत्तर
Given, `int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Let I = `int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"` ............(i)
Then using property:
`int_"a"^"b" "f"("x") "dx" = int_"a"^"b" "f"("a" + "b" - "x") "dx"`
I = `int_2^8 (sqrt(10 - (2 + 8 - "x")))/(sqrt(2 + 8 - "x") + sqrt(10 - (2 + 8 - "x"))) "dx"`
= `int_2^8 (sqrt"x")/(sqrt(10 - "x") + sqrt"x") "dx"` ...........(ii)
Adding equation (i) and (ii), we get
2I = `int_2^8 (sqrt(10 - "x") + sqrt"x")/(sqrt"x" + sqrt(10 - "x")) "dx"`
⇒ 2I = `int_2^8 1. "dx"`
⇒ 2I = `["x"]_2^8`
⇒ 2I = 8 − 2
⇒ 2I = 6
∴ I = 3
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_0^{pi/2} xsinx dx` = ______
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
`int_1^2 x logx dx`= ______
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`
Evaluate the following definite intergral:
`int_1^3logx dx`