Advertisements
Advertisements
प्रश्न
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
उत्तर
Given, `int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Let I = `int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"` ............(i)
Then using property:
`int_"a"^"b" "f"("x") "dx" = int_"a"^"b" "f"("a" + "b" - "x") "dx"`
I = `int_2^8 (sqrt(10 - (2 + 8 - "x")))/(sqrt(2 + 8 - "x") + sqrt(10 - (2 + 8 - "x"))) "dx"`
= `int_2^8 (sqrt"x")/(sqrt(10 - "x") + sqrt"x") "dx"` ...........(ii)
Adding equation (i) and (ii), we get
2I = `int_2^8 (sqrt(10 - "x") + sqrt"x")/(sqrt"x" + sqrt(10 - "x")) "dx"`
⇒ 2I = `int_2^8 1. "dx"`
⇒ 2I = `["x"]_2^8`
⇒ 2I = 8 − 2
⇒ 2I = 6
∴ I = 3
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
Evaluate : ∫ log (1 + x2) dx
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_1^2 1/(2x + 3) dx` = ______
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_0^9 1/(1 + sqrtx)` dx = ______
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Evaluate:
`int_0^sqrt(2)[x^2]dx`