मराठी

Evaluate: xxxdx∫2810-xx+10-xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`

बेरीज

उत्तर

Given, `int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`

Let I = `int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"` ............(i)

Then using property:

`int_"a"^"b" "f"("x") "dx" = int_"a"^"b" "f"("a" + "b" - "x") "dx"`

I = `int_2^8 (sqrt(10 - (2 + 8 - "x")))/(sqrt(2 + 8 - "x") + sqrt(10 - (2 + 8 - "x"))) "dx"`

= `int_2^8 (sqrt"x")/(sqrt(10 - "x") + sqrt"x") "dx"` ...........(ii)

Adding equation (i) and (ii), we get

2I = `int_2^8 (sqrt(10 - "x") + sqrt"x")/(sqrt"x" + sqrt(10 - "x")) "dx"`

⇒ 2I = `int_2^8 1. "dx"`

⇒ 2I = `["x"]_2^8`

⇒ 2I = 8 − 2

⇒ 2I = 6

∴ I = 3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (April) Set 1

संबंधित प्रश्‍न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


Evaluate :  ∫ log (1 + x2) dx


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_1^2 1/(2x + 3)  dx` = ______


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_2^3 x/(x^2 - 1)` dx = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_0^9 1/(1 + sqrtx)` dx = ______ 


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×