Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
उत्तर
Let I = `int_0^1 x(1 - x)^5 *dx`
= `int_0^1 (1 - x)[1 - (1 - x)]^5*dx ...[because int_0^"a" f(x)*dx = int_0^"a" f("a" - x)*dx]`
= `int_0^1 (1 - x)x^5*dx`
= `int_0^1(x^5 - x^6)*dx`
= `int_0^1 x^5*dx - int_0^1 x^6*dx`
= `[(x^6)/6]_0^1 - [(x^7)/7]_0^1`
= `(1)/(6) (1^6 - 0) - (1)/(7) (1^7 - 0)`
= `(1)/(6) - (1)/(7)`
∴ I = `(1)/(42)`
Notes
The textbook answer is incorrect. Answer given in the textbook is `1/4^2`. However, as per our calculation, it is `1/42`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
Evaluate : `intsec^nxtanxdx`
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate`int (1)/(x(3+log x))dx`
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^{pi/2} log(tanx)dx` = ______
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_-1^1x^2/(1+x^2) dx=` ______.
Which of the following is true?
`int_0^1 "e"^(5logx) "d"x` = ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_0^1 1/(2x + 5) dx` = ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`