Advertisements
Advertisements
प्रश्न
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
उत्तर
\[\text{We have}, \]
\[ \int_0^a 3 x^2 d x = 8\]
\[ \Rightarrow \left[ 3 \frac{x^3}{3} \right]_0^a = 8\]
\[ \Rightarrow a^3 = 8\]
\[ \Rightarrow a = 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `intlogx/(1+logx)^2dx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`