मराठी

By using the properties of the definite integral, evaluate the integral: ∫-55|x+2|dx - Mathematics

Advertisements
Advertisements

प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`

बेरीज

उत्तर

Let `I = int_-5^5 abs (x + 2)  dx`

Define,

`abs (x + 2) = {(-(x + 2), if x + 2 < 0, or x< - 2),(x + 2, if x +2 >= 0, or x >=-2):}`

∵ `I = - int_-5^-2 (x + 2)  dx + int_-2^5 (x + 2)  dx`

`= -[(x + 2)^2/2]_-5^-2 + [(x + 2)^2/2]_-2^5`

`= [((-2 + 2)^2/2 - (-5 + 2)^2/2)] + [(5 + 2)^2/2 - (-2 + 2)^2/2]`

`= -1/2 [-9] + 1/2 [49 - 0]`

`= 9/2 + 49/2`

`= 58/2`

= 29

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.11 | Q 5 | पृष्ठ ३४७

संबंधित प्रश्‍न

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate :  ∫ log (1 + x2) dx


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_"a"^"b" "f"(x)  "d"x` = ______


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_0^1 "e"^(5logx) "d"x` = ______.


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


Evaluate: `int_(-1)^3 |x^3 - x|dx`


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×