Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
उत्तर
Let `I = int_-5^5 abs (x + 2) dx`
Define,
`abs (x + 2) = {(-(x + 2), if x + 2 < 0, or x< - 2),(x + 2, if x +2 >= 0, or x >=-2):}`
∵ `I = - int_-5^-2 (x + 2) dx + int_-2^5 (x + 2) dx`
`= -[(x + 2)^2/2]_-5^-2 + [(x + 2)^2/2]_-2^5`
`= [((-2 + 2)^2/2 - (-5 + 2)^2/2)] + [(5 + 2)^2/2 - (-2 + 2)^2/2]`
`= -1/2 [-9] + 1/2 [49 - 0]`
`= 9/2 + 49/2`
`= 58/2`
= 29
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate : ∫ log (1 + x2) dx
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_"a"^"b" "f"(x) "d"x` = ______
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^1 "e"^(5logx) "d"x` = ______.
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
Evaluate: `int_(-1)^3 |x^3 - x|dx`
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`