मराठी

Evaluate: ∫-13|x3-x|dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_(-1)^3 |x^3 - x|dx`

तक्ता
बेरीज

उत्तर

Let I = `int_(-1)^2|x^3 - x|dx`

= `int_(-1)^2|x(x^2 - 1)|dx`

= `int_(-1)^2|x(x - 1)(x + 1)|dx`

Here, x3 – x = 0, when x = 0, 1, –1

Value of x Value of (x3 – x)
–1 < x < 0 +ve
0 < x < 1 –ve
1 < x < 2 +ve

∴ |x3 – x| = `{{:(x^3 - x, if  -1 < x < 0 and 1 < x < 2),(-x^3 + x, if 0 < x < 1):}`

I = `int_(-1)^0(x^3 - x)dx + int_1^1(-x^3 + x)dx + int_1^2(x^3 - x)dx`

= `[x^4/4 - x^2/2]_-1^0 + [(-x^4)/4 + x^2/2]_0^1 + [x^4/4 - x^2/2]_1^2`

= `1/4 + 1/4 + 2 + 1/4`

= `2 + 3/4`

= `11/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (April) Term 2 - Outside Delhi Set 2

संबंधित प्रश्‍न

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


`int_0^1 "e"^(2x) "d"x` = ______


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Evaluate `int_-1^1 |x^4 - x|dx`.


Evaluate: `int_0^π x/(1 + sinx)dx`.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


`int_1^2 x logx  dx`= ______


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×