Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
उत्तर
Let`I = int_(-pi//2)^(pi//2) sin^2 x dx`
`= 2 int_0^(pi//2) sin^2 x dx` ...(i) ...(∵ sin2 x is a function)
Then `I = 2 int_0^(pi//2) sin^2 (pi/2 - x) dx`
`= int_0^(pi//2) cos^2 x dx` ...(ii) `[because int_0^a f(x) = int_0^a f(a - x) dx]`
On adding equations (i) and (ii)
`2I = 2 int_0^(pi//2) (sin^2 x + cos^2 x) dx`
`2I = 2 int_0^(pi//2) 1 dx`
`=> 2I = 2 [x]_0^(pi//2)`
`=> 2I = 2 xx pi/2`
Hence, `I = pi/2`
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : ∫ log (1 + x2) dx
`int_"a"^"b" "f"(x) "d"x` = ______
`int_2^4 x/(x^2 + 1) "d"x` = ______
Evaluate `int_1^3 x^2*log x "d"x`
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`