मराठी

By using the properties of the definite integral, evaluate the integral: ∫-π2π2sin2x dx - Mathematics

Advertisements
Advertisements

प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`

बेरीज

उत्तर

Let`I = int_(-pi//2)^(pi//2)  sin^2 x  dx`

`= 2 int_0^(pi//2)  sin^2 x  dx`   ...(i)   ...(∵ sin2 x is a function)

Then `I = 2 int_0^(pi//2)  sin^2  (pi/2 - x)  dx`

`= int_0^(pi//2) cos^2 x  dx`  ...(ii)    `[because int_0^a f(x) = int_0^a  f(a - x)  dx]`

On adding equations (i) and (ii)

`2I = 2 int_0^(pi//2) (sin^2  x + cos^2   x)  dx`

`2I = 2 int_0^(pi//2)  1 dx`

`=> 2I = 2 [x]_0^(pi//2)`

`=> 2I = 2 xx pi/2`

Hence, `I = pi/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.11 | Q 11 | पृष्ठ ३४७

संबंधित प्रश्‍न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


Evaluate :  ∫ log (1 + x2) dx


`int_"a"^"b" "f"(x)  "d"x` = ______


`int_2^4 x/(x^2 + 1)  "d"x` = ______


Evaluate `int_1^3 x^2*log x  "d"x`


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


f(x) =  `{:{(x^3/k;       0 ≤ x ≤ 2), (0;     "otherwise"):}` is a p.d.f. of X. The value of k is ______


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


`int (dx)/(e^x + e^(-x))` is equal to ______.


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×