Advertisements
Advertisements
प्रश्न
Evaluate : ∫ log (1 + x2) dx
उत्तर
Let I = ∫ log (1 + x2) dx
Put x = tan θ
∴ dx = sec2 θ d θ
`therefore "I" = int "log" (1 + "tan"^2 theta) . "sec"^2 theta "d" theta`
`= int "log"("sec"^2 theta) . "sec"^2 theta "d" theta`
`= 2 int "log" (sec theta) . "sec"^2 theta "d" theta`
`= 2 ["log" ("sec") theta . int "sec"^2 theta "d" theta - int ["d"/("d" theta) "log" ("sec" theta) . int "sec"^2 theta "d" theta] "d" theta]`
`= 2 xx ["log" ("sec" theta) . "tan" theta - int ("sec" theta . "tan" theta)/("sec" theta) . "tan" theta "d" theta]`
`= 2 ["log" ("sec" theta) . "tan" theta - int "tan"^2 "d" theta]`
`= 2 ["tan" theta . "log" ("sec" theta) - int ("sec"^2 theta - 1) "d" theta]`
`= "tan" theta . "log" ("sec"^2 theta) - 2 "tan" theta + 2 theta + "C"`
`= "x" . "log" (1 + "x"^2) - "2x" + 2 "tan"^-1 "x" + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_"a"^"b" "f"(x) "d"x` = ______
`int_1^2 1/(2x + 3) dx` = ______
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^{pi/2} cos^2x dx` = ______
`int_0^1 x tan^-1x dx` = ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
Which of the following is true?
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`
Evaluate the following definite intergral:
`int_1^3logx dx`