मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Evaluate : - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate :  ∫ log (1 + x2) dx

बेरीज

उत्तर

Let I = ∫ log (1 + x2) dx

Put x = tan θ

∴ dx = sec2 θ  d θ

`therefore "I" = int  "log" (1 + "tan"^2 theta) . "sec"^2 theta   "d" theta` 


`= int  "log"("sec"^2 theta) . "sec"^2 theta  "d" theta`


`= 2 int  "log"  (sec theta) . "sec"^2 theta  "d" theta`


`= 2 ["log" ("sec")  theta . int  "sec"^2 theta  "d" theta - int  ["d"/("d" theta) "log"  ("sec" theta) . int  "sec"^2 theta  "d" theta] "d" theta]`


`= 2 xx ["log"  ("sec"  theta) . "tan"  theta -  int  ("sec"  theta . "tan" theta)/("sec" theta) . "tan"  theta  "d"  theta]`


`= 2  ["log"  ("sec"  theta) . "tan"  theta - int  "tan"^2  "d" theta]`


`= 2 ["tan"  theta . "log" ("sec"  theta) - int ("sec"^2 theta - 1)  "d"  theta]`


`= "tan"  theta . "log" ("sec"^2  theta) - 2  "tan"  theta + 2   theta + "C"`


`= "x" . "log" (1 + "x"^2) - "2x" + 2 "tan"^-1 "x" + "C"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (October)

APPEARS IN

संबंधित प्रश्‍न

 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


`int_"a"^"b" "f"(x)  "d"x` = ______


`int_1^2 1/(2x + 3)  dx` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_0^1 x tan^-1x  dx` = ______ 


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


Which of the following is true?


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×