Advertisements
Advertisements
प्रश्न
Evaluate : ∫ log (1 + x2) dx
उत्तर
Let I = ∫ log (1 + x2) dx
Put x = tan θ
∴ dx = sec2 θ d θ
`therefore "I" = int "log" (1 + "tan"^2 theta) . "sec"^2 theta "d" theta`
`= int "log"("sec"^2 theta) . "sec"^2 theta "d" theta`
`= 2 int "log" (sec theta) . "sec"^2 theta "d" theta`
`= 2 ["log" ("sec") theta . int "sec"^2 theta "d" theta - int ["d"/("d" theta) "log" ("sec" theta) . int "sec"^2 theta "d" theta] "d" theta]`
`= 2 xx ["log" ("sec" theta) . "tan" theta - int ("sec" theta . "tan" theta)/("sec" theta) . "tan" theta "d" theta]`
`= 2 ["log" ("sec" theta) . "tan" theta - int "tan"^2 "d" theta]`
`= 2 ["tan" theta . "log" ("sec" theta) - int ("sec"^2 theta - 1) "d" theta]`
`= "tan" theta . "log" ("sec"^2 theta) - 2 "tan" theta + 2 theta + "C"`
`= "x" . "log" (1 + "x"^2) - "2x" + 2 "tan"^-1 "x" + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
`int_"a"^"b" "f"(x) "d"x` = ______
`int_0^1 "e"^(2x) "d"x` = ______
`int_2^4 x/(x^2 + 1) "d"x` = ______
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
`int_a^b f(x)dx` = ______.
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`