हिंदी

Evaluate: π∫0π211+(tanx)23dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`

योग

उत्तर

Let I = `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`  ...(i)

I = `int_0^(π/2) 1/(1 + [tan(π/2 - x)]^(2/3)) dx`  ...[Using property `int_0^a f(x)dx = int_0^a f(a - x)dx`]

I = `int_0^(π/2) 1/(1 + (cot x)^(2/3)) dx`

I = `int_0^(π/2) ((tanx)^(2/3))/((tanx)^(2/3) + 1) dx`

I = `int_0^(pi/2) ((tanx)^(2/3) + 1 - 1)/((tanx)^(2/3) + 1) dx`

I = `int_0^(π/2) (1 + (tanx)^(3/2))/(1 + (tanx)^(3/2)) dx - int_0^(π/2) 1/(1 + (tanx)^(3/2)) dx`

I = `int_0^(π/2) 1.dx - I`  ...[From equation (i)]

2I = `int_0^(π/2) 1.dx`

2I = `[x]_0^(π/2)`

2I = `π/2`

I = `π/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Term 2 - Delhi Set 2

संबंधित प्रश्न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


`int_0^1 (1 - x)^5`dx = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^{pi/2} cos^2x  dx` = ______ 


Which of the following is true?


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


Evaluate: `int_(-1)^3 |x^3 - x|dx`


`int_a^b f(x)dx` = ______.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Evaluate the following definite integral:

`int_1^3 log x  dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×