Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
उत्तर
Let I = `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx` ...(i)
I = `int_0^(π/2) 1/(1 + [tan(π/2 - x)]^(2/3)) dx` ...[Using property `int_0^a f(x)dx = int_0^a f(a - x)dx`]
I = `int_0^(π/2) 1/(1 + (cot x)^(2/3)) dx`
I = `int_0^(π/2) ((tanx)^(2/3))/((tanx)^(2/3) + 1) dx`
I = `int_0^(pi/2) ((tanx)^(2/3) + 1 - 1)/((tanx)^(2/3) + 1) dx`
I = `int_0^(π/2) (1 + (tanx)^(3/2))/(1 + (tanx)^(3/2)) dx - int_0^(π/2) 1/(1 + (tanx)^(3/2)) dx`
I = `int_0^(π/2) 1.dx - I` ...[From equation (i)]
2I = `int_0^(π/2) 1.dx`
2I = `[x]_0^(π/2)`
2I = `π/2`
I = `π/4`
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
`int_"a"^"b" "f"(x) "d"x` = ______
`int_0^1 "e"^(2x) "d"x` = ______
`int_1^2 1/(2x + 3) dx` = ______
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
`int_2^3 x/(x^2 - 1)` dx = ______
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following definite intergral:
`int_1^3logx dx`