मराठी

Evaluate: π∫0π211+(tanx)23dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`

बेरीज

उत्तर

Let I = `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`  ...(i)

I = `int_0^(π/2) 1/(1 + [tan(π/2 - x)]^(2/3)) dx`  ...[Using property `int_0^a f(x)dx = int_0^a f(a - x)dx`]

I = `int_0^(π/2) 1/(1 + (cot x)^(2/3)) dx`

I = `int_0^(π/2) ((tanx)^(2/3))/((tanx)^(2/3) + 1) dx`

I = `int_0^(pi/2) ((tanx)^(2/3) + 1 - 1)/((tanx)^(2/3) + 1) dx`

I = `int_0^(π/2) (1 + (tanx)^(3/2))/(1 + (tanx)^(3/2)) dx - int_0^(π/2) 1/(1 + (tanx)^(3/2)) dx`

I = `int_0^(π/2) 1.dx - I`  ...[From equation (i)]

2I = `int_0^(π/2) 1.dx`

2I = `[x]_0^(π/2)`

2I = `π/2`

I = `π/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (April) Term 2 - Delhi Set 2

संबंधित प्रश्‍न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


`int_"a"^"b" "f"(x)  "d"x` = ______


`int_0^1 "e"^(2x) "d"x` = ______


`int_1^2 1/(2x + 3)  dx` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


`int_2^3 x/(x^2 - 1)` dx = ______


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×