हिंदी

∫-π2π2(x3+xcosx+tan5x+1)dx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

-π2π2(x3+xcosx+tan5x+1)dx is ______.

विकल्प

  • 0

  • 2

  • π

  • 1

MCQ
रिक्त स्थान भरें

उत्तर

-π2π2(x3+xcosx+tan5x+1)dx is π.

Explanation:

Let -π2π2(x3+x cosx+tan5x+1)  dx

-π2π2(x3+x cosx+tan5x)dx+-π2π21dx

Because (x3+xcosx+tan5x) is an equivalent function.

Hence, -π/2π/2(x3+x cosx+tan5x)dx=0

I=0+[x]-π2π2

=π2-(-π2)

=π2+π2=π

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.11 | Q 20 | पृष्ठ ३४७

संबंधित प्रश्न

Prove that: 02af(x)dx=0af(x)dx+0af(2a-x)dx


Evaluate :0πxsinx1+sinxdx


If 0α(3x2+2x+1)dx=14 then α=

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

0π2cos2xdx


By using the properties of the definite integral, evaluate the integral:

0π2(2logsinx-logsin2x)dx


By using the properties of the definite integral, evaluate the integral:

0πlog(1+cosx)dx


By using the properties of the definite integral, evaluate the integral:

0a xx +a-x  dx


The value of 0π2log (4+3sinx4+3cosx) dx is ______.


0a3x2dx=8, find the value of a.


If f(a+bx)=f(x) , then prove that

abxf(x)dx=(a+b2)abf(x)dx

Choose the correct alternative:

-99x34-x2 dx =


By completing the following activity, Evaluate 25xx+7-x dx.

Solution: Let I = 25xx+7-x dx     ......(i)

Using the property, abf(x)dx=abf(a+b-x) dx, we get

I = 25(  )7-x+(  ) dx   ......(ii)

Adding equations (i) and (ii), we get

2I = 25xx-7-x dx+(  ) dx

2I = 25((    )+(     )(    )+(     )) dx

2I =

∴ I =  


cosx+xsinxx(x+cosx)dx = ?


0π4sec2x(1+tanx)(2+tanx)dx = ?


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k(x-2x3k), then value of k is ______.


01(1-x1!+x22!-x33!+...upto) e2x dx = ?


0π4sin2xsin4x+cos4xdx = ____________


01xtan-1x dx = ______ 


π6π3sin2xdx = ______ 


0πsin2x.cos2x dx = ______ 


-11log(2-x2+x)dx=?


0911+x dx = ______ 


Evaluate 0π2tan7xcot7x+tan7xdx


Find 0π41+sin2xdx


Show that 0π2sin2xsinx+cosx=12log(2+1)


Evaluate the following:

0π2 dx(a2cos2x+b2sin2x)2 (Hint: Divide Numerator and Denominator by cos4x)


Evaluate the following:

-π4π4log|sinx+cosx|dx


0π2 cosxesinx dx is equal to ______.


dxex+e-x is equal to ______.


Evaluate: 13xx+4-xdx


If 0π2logcosx dx=π2log(12), then 0π2logsecdx = ______.


12xlogx dx= ______


02af(x)f(x)+f(2a-x) dx = ______


Evaluate the following integral:

01x(1-x)5dx


Evaluate the following integrals:

-99x34-x3dx


Solve.

01ex2x3dx


Evaluate:

06|x+3|dx


Evaluate the following integral:

01x(1-x)5dx


Evaluate the following definite integral:

-231x+5 dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.