हिंदी

The value of ∫0π2log (4+3sinx4+3cosx) dx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.

विकल्प

  • 2

  • `3/4`

  • 0

  • - 2

MCQ
रिक्त स्थान भरें

उत्तर

The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is 0.

Explanation:

Let I `= int_0^(pi//2)  log  ((4 + 3 sin x)/(4 + 3 cos x))  "dx"`

Also, `I = int_0^(pi/2) log [(4+3 sin (pi/2 - x))/(4 + 3 cos (pi/2 - x))]  dx`

`[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`

⇒ ` I = int_0^(pi/2) log [(4+3 cos x)/(4+3 sin x)] dx`

⇒ `I = - int_0^(pi/2) log [(4+3sinx)/(4+3cosx)] dx`

⇒  I = -I

⇒  2I = 0

⇒  I = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.11 | Q 21 | पृष्ठ ३४७

संबंधित प्रश्न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_1^2 1/(2x + 3)  dx` = ______


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


`int_0^{pi/2} log(tanx)dx` = ______


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_0^{pi/2} cos^2x  dx` = ______ 


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_(-1)^3 |x^3 - x|dx`


`int_4^9 1/sqrt(x)dx` = ______.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×