मराठी

The value of ∫0π2log (4+3sinx4+3cosx) dx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.

पर्याय

  • 2

  • `3/4`

  • 0

  • - 2

MCQ
रिकाम्या जागा भरा

उत्तर

The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is 0.

Explanation:

Let I `= int_0^(pi//2)  log  ((4 + 3 sin x)/(4 + 3 cos x))  "dx"`

Also, `I = int_0^(pi/2) log [(4+3 sin (pi/2 - x))/(4 + 3 cos (pi/2 - x))]  dx`

`[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`

⇒ ` I = int_0^(pi/2) log [(4+3 cos x)/(4+3 sin x)] dx`

⇒ `I = - int_0^(pi/2) log [(4+3sinx)/(4+3cosx)] dx`

⇒  I = -I

⇒  2I = 0

⇒  I = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.11 | Q 21 | पृष्ठ ३४७

संबंधित प्रश्‍न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_2^4 x/(x^2 + 1)  "d"x` = ______


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


`int_a^b f(x)dx` = ______.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×