Advertisements
Advertisements
प्रश्न
Integrate the function:
`1/(x - x^3)`
उत्तर
Let `1/(x - x^3) = 1/(x(1 + x)(1 - x))`
`≡ A/x + B/(1 + x) + C/(1 - x)`
⇒ 1 = A (1 + x) (1 – x) + Bx (1 – x) + Cx (1 + x) …(1)
Putting x = 0 in equation (1),
1 = A(1 + 0) (1 – 0)
⇒ A = 1
Putting x = -1 in equation (1),
1 = B (-1) (1 + 1)
`=> B = - 1/2`
Putting x = 1 in equation (1),
1 = C(1)(1 + 1)
`=> C = 1/2`
`therefore 1/(x - x^3) = 1/x - 1/(2(1 + x)) + 1/(2(1 - x))`
`therefore int 1/(x - x^3) dx = int 1/x dx - 1/2 int 1/(1 + x) dx + 1/2 int 1/(1 - x) dx`
`= log |x| - 1/2 log |1 + x| - 1/2 log |1 - x| + C`
`= 1/2 log |x|^2 - 1/2 log |1 - x^2| + C`
`= 1/2 log |x^2/(1 - x^2)|` + C
APPEARS IN
संबंधित प्रश्न
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Evaluate `int tan^(-1) sqrtx dx`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (dx)/sqrt(9x - 4x^2)` equal
`f x^2 e^(x^3) dx` equals
`int sqrt(1 + x^2) dx` is equal to
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
`d/(dx)x^(logx)` = ______.