मराठी

Integrate the function: 1x-x3 - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function:

`1/(x - x^3)`

बेरीज

उत्तर

Let `1/(x - x^3) = 1/(x(1 + x)(1 - x))`

`≡ A/x + B/(1 + x) + C/(1 - x)`

⇒ 1 = A (1 + x) (1 – x) + Bx (1 – x) + Cx (1 + x)        …(1)

Putting x = 0 in equation (1),

1 = A(1 + 0) (1 – 0)

⇒ A = 1

Putting x = -1 in equation (1),

1 = B (-1) (1 + 1)

`=> B = - 1/2`

Putting x = 1 in equation (1),

1 = C(1)(1 + 1)

`=> C = 1/2`

`therefore 1/(x - x^3) = 1/x - 1/(2(1 + x)) + 1/(2(1 - x))`

`therefore int 1/(x - x^3) dx = int 1/x dx - 1/2 int 1/(1 + x) dx + 1/2 int 1/(1 - x) dx`

`= log |x| - 1/2 log |1 + x| - 1/2 log |1 - x| + C`

`= 1/2 log |x|^2 - 1/2 log |1 - x^2| + C`

`= 1/2 log |x^2/(1 - x^2)|` +  C

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.12 [पृष्ठ ३५२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.12 | Q 1 | पृष्ठ ३५२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Write the antiderivative of `(3sqrtx+1/sqrtx).`


Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`


 

Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`

 

Find the following integrals:

`int (4e^(3x) + 1)`


Find the following integrals:

`int (ax^2 + bx + c) dx`


Find the following integrals:

`int (x^3 - x^2 + x - 1)/(x - 1) dx`


Find the following integrals:

`int(1 - x) sqrtx dx`


Find the following integrals:

`intsqrtx( 3x^2 + 2x + 3) dx`


Find the following integrals:

`intsec x (sec x + tan x) dx`


Find the following integrals:

`int (2 - 3 sinx)/(cos^2 x) dx.`


Integrate the function:

`1/(sqrt(x+a) + sqrt(x+b))`


Integrate the function:

`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`


Integrate the function:

`1/(x^2(x^4 + 1)^(3/4))`


Integrate the function: 

`1/(x^(1/2) + x^(1/3))  ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))),  "put x" = t^6]`


Integrate the function:

`sinx/(sin (x - a))`


Integrate the function:

`cos x/sqrt(4 - sin^2 x)`


Integrate the function:

`1/(cos (x+a) cos(x+b))`


Integrate the function:

`x^3/(sqrt(1-x^8)`


Integrate the function:

`e^(3log x) (x^4 + 1)^(-1)`


Integrate the function:

f' (ax + b) [f (ax + b)]n


Integrate the function:

`1/sqrt(sin^3 x sin(x + alpha))`


Integrate the function:

`(2+ sin 2x)/(1+ cos 2x) e^x`


Integrate the function:

`(x^2 + x + 1)/((x + 1)^2 (x + 2))`


Evaluate `int tan^(-1) sqrtx dx`


Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .


If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is


`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to


`int (dx)/sqrt(9x - 4x^2)` equal


`f x^2 e^(x^3) dx` equals


`int sqrt(1 + x^2) dx` is equal to


`int sqrt(x^2 - 8x + 7)  dx` is equal to:-


If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.


`d/(dx)x^(logx)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×