Advertisements
Advertisements
प्रश्न
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
उत्तर
\[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\]
\[\text { Let } x^2 = t\]
\[ \therefore \frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left( t + 1 \right)\left( t + 4 \right)}{\left( t + 3 \right)\left( t - 5 \right)} = \frac{t^2 + 5t + 4}{\left( t + 3 \right)\left( t - 5 \right)} = 1 + \frac{7t + 19}{\left( t + 3 \right)\left( t - 5 \right)}\]
\[\text { Let } \frac{7t + 19}{\left( t + 3 \right)\left( t - 5 \right)} = \frac{A}{t + 3} + \frac{B}{t - 5}\]
\[ \Rightarrow 7t + 19 = A\left( t - 5 \right) + B\left( t + 3 \right)\]
\[\text { Putting }t = 5, \text { we get } B = \frac{27}{4}\]
\[\text { Putting } t = - 3, \text { we get } A = \frac{1}{4}\]
\[ \therefore \frac{t^2 + 5t + 4}{\left( t + 3 \right)\left( t - 5 \right)} = 1 + \frac{1}{4\left( t + 3 \right)} + \frac{27}{4\left( t - 5 \right)}\]
\[ \Rightarrow \int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx = \int dx + \frac{1}{4}\int\frac{1}{\left( x^2 + 3 \right)}dx + \frac{27}{4}\int\frac{1}{\left( x^2 - 5 \right)}dx\]
\[ = x + \frac{1}{4 \times \sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + \frac{27}{4} \times \frac{1}{2\sqrt{5}}\log\left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| + C\]
\[ = x + \frac{1}{4\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + \frac{27}{8\sqrt{5}}\log\left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| + C\]
APPEARS IN
संबंधित प्रश्न
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`int(1 - x) sqrtx dx`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
Evaluate `int tan^(-1) sqrtx dx`
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (dx)/(sin^2x cos^2x) dx` equals
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (dx)/sqrt(9x - 4x^2)` equals
`int (xdx)/((x - 1)(x - 2))` equals
`int (dx)/(x(x^2 + 1))` equals
`f x^2 e^(x^3) dx` equals
`int sqrt(1 + x^2) dx` is equal to
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
`d/(dx)x^(logx)` = ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.