मराठी

Find : ∫ ( X 2 + 1 ) ( X 2 + 4 ) ( X 2 + 3 ) ( X 2 − 5 ) D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .

उत्तर

\[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\]

\[\text { Let } x^2 = t\]

\[ \therefore \frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)} = \frac{\left( t + 1 \right)\left( t + 4 \right)}{\left( t + 3 \right)\left( t - 5 \right)} = \frac{t^2 + 5t + 4}{\left( t + 3 \right)\left( t - 5 \right)} = 1 + \frac{7t + 19}{\left( t + 3 \right)\left( t - 5 \right)}\]

\[\text { Let } \frac{7t + 19}{\left( t + 3 \right)\left( t - 5 \right)} = \frac{A}{t + 3} + \frac{B}{t - 5}\]

\[ \Rightarrow 7t + 19 = A\left( t - 5 \right) + B\left( t + 3 \right)\]

\[\text { Putting }t = 5, \text { we get } B = \frac{27}{4}\]

\[\text { Putting } t = - 3, \text { we get } A = \frac{1}{4}\]

\[ \therefore \frac{t^2 + 5t + 4}{\left( t + 3 \right)\left( t - 5 \right)} = 1 + \frac{1}{4\left( t + 3 \right)} + \frac{27}{4\left( t - 5 \right)}\]

\[ \Rightarrow \int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx = \int dx + \frac{1}{4}\int\frac{1}{\left( x^2 + 3 \right)}dx + \frac{27}{4}\int\frac{1}{\left( x^2 - 5 \right)}dx\]

\[ = x + \frac{1}{4 \times \sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + \frac{27}{4} \times \frac{1}{2\sqrt{5}}\log\left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| + C\]

\[ = x + \frac{1}{4\sqrt{3}} \tan^{- 1} \left( \frac{x}{\sqrt{3}} \right) + \frac{27}{8\sqrt{5}}\log\left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) Foreign Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 

Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`

 

Find an anti derivative (or integral) of the following function by the method of inspection.

Cos 3x


Find an antiderivative (or integral) of the following function by the method of inspection.

sin 2x – 4 e3x


Find the following integrals:

`int (4e^(3x) + 1)`


Find the following integrals:

`int(1 - x) sqrtx dx`


Integrate the function: 

`1/(x^(1/2) + x^(1/3))  ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))),  "put x" = t^6]`


Integrate the function:

`(5x)/((x+1)(x^2 +9))`


Integrate the function:

`(e^(5log x) -  e^(4log x))/(e^(3log x) - e^(2log x))`


Integrate the function:

`cos x/sqrt(4 - sin^2 x)`


Integrate the function:

`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`


Integrate the function:

`x^3/(sqrt(1-x^8)`


Integrate the function:

`1/sqrt(sin^3 x sin(x + alpha))`


Integrate the function:

`sqrt((1-sqrtx)/(1+sqrtx))`


Integrate the function:

`(x^2 + x + 1)/((x + 1)^2 (x + 2))`


Evaluate `int(x^3+5x^2 + 4x + 1)/x^2  dx`


Evaluate `int tan^(-1) sqrtx dx`


If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is


`int (dx)/(sin^2x cos^2x) dx` equals


`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to


`int (dx)/sqrt(9x - 4x^2)` equals


`int (xdx)/((x - 1)(x - 2))` equals


`int (dx)/(x(x^2 + 1))` equals


`f x^2 e^(x^3) dx` equals


`int sqrt(1 + x^2) dx` is equal to


If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.


`d/(dx)x^(logx)` = ______.


`int (dx)/sqrt(5x - 6 - x^2)` equals ______.


Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×