Advertisements
Advertisements
प्रश्न
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
उत्तर
Let `I = int 1/ (sqrt(sin^3 x sin (x + alpha))) dx`
`= int sqrt ((sinx)/(sin^4 x sin (x + alpha))) dx`
`= int 1/ (sin^2 x) sqrt((sinx)/ (sin (x + alpha))) dx`
Let `(sin (x + alpha))/ sinx = t`
⇒ `(sin x cos (x + alpha) - cos x sin (x + alpha))/sin^2 x dx = dt`
⇒ `(sin [x - (x + alpha)])/sin^2 x dx = dt`
⇒ `-(sin alpha)/sin^2 x dx = dt`
∴ `I = int - 1/ (sin alpha)* 1/sqrtt dt`
`= -1/ (sin alpha) int t^(-1/2) dt`
`= -1/ (sin alpha) t^(1/2)/(1/2) + C`
`= (-2)/ (sin alpha) sqrtt + C`
`= (-2)/(sin alpha) sqrt (sin(x + alpha)/sinx) + C`
APPEARS IN
संबंधित प्रश्न
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`cos^3 xe^(log sinx)`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Evaluate: `int (1 - cos x)/(cos x(1 + cos x)) dx`
`int (dx)/(sin^2x cos^2x) dx` equals
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (dx)/sqrt(9x - 4x^2)` equal
`int (dx)/(x(x^2 + 1))` equals
`int sqrt(1 + x^2) dx` is equal to
What is anti derivative of `e^(2x)`
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.