Advertisements
Advertisements
प्रश्न
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
उत्तर
Let I = `int (x^3 + 3x + 4)/sqrtx` dx
`I = int (x^(5/2) + 3x^(1/2) + 4x^(-(1)/2))` dx
`I = int x^(5/2) dx + 3 int x^(1/2) dx + 4 int x^(-(1)/2) dx`
`I = 2/7 x^(7/2) + 3 xx 2/3 x^(5/2) + 4 xx 2x^(1/2) + C`
`I = 2/7 x^(7/2) + 2x^(3/2) + 8 sqrtx + C`
APPEARS IN
संबंधित प्रश्न
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals:
`intsec x (sec x + tan x) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`sinx/(sin (x - a))`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
`1/((x^2 + 1)(x^2 + 4))`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Evaluate `int tan^(-1) sqrtx dx`
`sqrt((10x^9 + 10^x log e^10)/(x^10 + 10^x)) dx` equals
`int (sin^2x - cos^2x)/(sin^2x cos^2x) dx` is equal to
`int (xdx)/((x - 1)(x - 2))` equals
`f x^2 e^(x^3) dx` equals
`int e^x sec x(1 + tanx) dx` equals
`int sqrt(1 + x^2) dx` is equal to
What is anti derivative of `e^(2x)`
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
`d/(dx)x^(logx)` = ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.