Advertisements
Advertisements
प्रश्न
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
उत्तर
Let `I = e^x/((1 + e^x)(2 + e^x))`
Put ex = t
ex dx = dt
∴ I = `int dt/((1 + t)(2 + t))`
Let `1/((1 + t)(2 + t)) = A/(1 + t) + B/(2 + t)`
`=> 1 = A(2 + t) + B(1 + t)` ....(1)
Putting t = -1 in equation (1),
∴ 1 = A(2 - 1)
⇒ A = 1
Putting t = -2 in equation (1),
∴ 1 = B(1 - 2)
⇒ B = - 1
`therefore 1/((1 + t)(2 + t)) dt`
`= int (1/(1 + t) - 1/(2 + t)) dt`
`therefore I = int 1/(1 + t) dt - int 1/(2 + t) dt`
`= log |1 + t| - log |2 + t| + C`
`= log |1 + e^x| - log |2 + e^x| + C`
`= log |(1 + t)/(2 + t)| + C`
`= log |(1 + e^x)/(2 + e^x)| + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`cos^3 xe^(log sinx)`
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Evaluate `int tan^(-1) sqrtx dx`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
`sqrt((10x^9 + 10^x log e^10)/(x^10 + 10^x)) dx` equals
`int (dx)/sqrt(9x - 4x^2)` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`int (dx)/(x(x^2 + 1))` equals
`f x^2 e^(x^3) dx` equals
`int e^x sec x(1 + tanx) dx` equals
`int sqrt(1 + x^2) dx` is equal to
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
`d/(dx)x^(logx)` = ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.