Advertisements
Advertisements
Question
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Solution
Let `I = e^x/((1 + e^x)(2 + e^x))`
Put ex = t
ex dx = dt
∴ I = `int dt/((1 + t)(2 + t))`
Let `1/((1 + t)(2 + t)) = A/(1 + t) + B/(2 + t)`
`=> 1 = A(2 + t) + B(1 + t)` ....(1)
Putting t = -1 in equation (1),
∴ 1 = A(2 - 1)
⇒ A = 1
Putting t = -2 in equation (1),
∴ 1 = B(1 - 2)
⇒ B = - 1
`therefore 1/((1 + t)(2 + t)) dt`
`= int (1/(1 + t) - 1/(2 + t)) dt`
`therefore I = int 1/(1 + t) dt - int 1/(2 + t) dt`
`= log |1 + t| - log |2 + t| + C`
`= log |1 + e^x| - log |2 + e^x| + C`
`= log |(1 + t)/(2 + t)| + C`
`= log |(1 + e^x)/(2 + e^x)| + C`
APPEARS IN
RELATED QUESTIONS
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find the following integrals:
`int (4e^(3x) + 1)`
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`int(sec^2x)/(cosec^2x) dx`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
If `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0, then f(x) is ______.
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`cos x/sqrt(4 - sin^2 x)`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
The anti derivative of `(sqrt(x) + 1/sqrt(x))` is equals:
`int (dx)/sqrt(9x - 4x^2)` equal
`int (xdx)/((x - 1)(x - 2))` equals
`int (dx)/(x(x^2 + 1))` equals
`int e^x sec x(1 + tanx) dx` equals
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
`d/(dx)x^(logx)` = ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.