Advertisements
Advertisements
Question
Integrate the function:
`1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Solution
Let `1/(xsqrt(ax - x^2))`
Put `x = a/t`
dx = `- a/t^2 dt`
Now, `xsqrt(ax - x^2) = a/tsqrt(a xx a/t - a^2/t^2)`
`= a^2/t sqrt(1/t - 1/t^2) = a^2/t^2 sqrt(t - 1)`
`therefore I = 1/(a^2/t^2 sqrt(t - 1)) xx (- a)/t^2 dt`
`= - 1/a int 1/sqrt(t - 1) dt`
`= - 1/a ((t - 1)^(- 1/2 + 1))/(- 1/2 + 1) + C`
`= - 1/a (t - 1)^(1/2)/(1/2) + C`
`= - 2/a sqrt(t - 1) + C`
`= - 2/a sqrt(a/x - 1) + C`
`= - 2/a sqrt((a - x)/x) + C`
APPEARS IN
RELATED QUESTIONS
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
If `f(x) =∫_0^xt sin t dt` , then write the value of f ' (x).
Find an anti derivative (or integral) of the following function by the method of inspection.
Cos 3x
Find the following integrals:
`int (ax^2 + bx + c) dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
Integrate the function:
`1/(sqrt(x+a) + sqrt(x+b))`
Integrate the function:
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))), "put x" = t^6]`
Integrate the function:
`(5x)/((x+1)(x^2 +9))`
Integrate the function:
`x^3/(sqrt(1-x^8)`
Integrate the function:
`1/((x^2 + 1)(x^2 + 4))`
Integrate the function:
`e^(3log x) (x^4 + 1)^(-1)`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Evaluate `int(x^3+5x^2 + 4x + 1)/x^2 dx`
If `d/(dx) f(x) = 4x^3 - 3/x^4`, such that `f(2) = 0`, then `f(x)` is
`int (dx)/sqrt(9x - 4x^2)` equal
`int (dx)/sqrt(9x - 4x^2)` equals
`int (dx)/(x(x^2 + 1))` equals
`int e^x sec x(1 + tanx) dx` equals
`int sqrt(1 + x^2) dx` is equal to
`int sqrt(x^2 - 8x + 7) dx` is equal to:-
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
`int (dx)/sqrt(5x - 6 - x^2)` equals ______.