English

Integrate the function: 1x2(x4+1)34 - Mathematics

Advertisements
Advertisements

Question

Integrate the function:

`1/(x^2(x^4 + 1)^(3/4))`

Sum

Solution 1

Let I = `int 1/(x^2(x^4 + 1)^(3/4)` dx

put x = `sqrt(tan theta)`

`therefore dx = 1/2 (tan theta)^(1/2 - 1) * sec^2 theta  d theta`

`= (sec^2 theta)/(2sqrt(tan theta))dθ`

`= int 1/(tan θ (tan^2 θ + 1)^(3/4)) * (sec^2 θ)/(2sqrt(tan θ))`dx

`= 1/2 int (sec^2 θ  d θ)/(tan θ * sec^(3/2) θ * sqrt(tan θ))`

`= 1/2 int (sec^2 θ dθ)/((tan θ * sec θ)^(3/2))`

`= 1/2 int (sec^2 θ  dθ)/((sin θ)/(cos θ) * sec θ)^(3/2)`

`= 1/2 int (sec^2 θ  dθ)/(sin^(3/2) θ (sec^2θ)^(3/2))`

`therefore 1/2 int (sec^2 θ  dθ)/(sin^(3/2) θ (sec^3 θ))`

`= 1/2 int (cos θ  dθ)/(sin^(3/2) θ)`

Putting sin θ = t,

cos θ dθ = dt

`therefore I = 1/2 int dt/t^(3//2) = 1/2 int t^(-3/2)` dt

`= 1/2 (-2)t^(- 1/2) + C`

`= - 1/sqrtt + C`

`= - 1/sqrt(sin theta) + C`

Putting x = `sqrt(tan θ)`,

tan θ = x2

`therefore sin theta = x^2/sqrt(1 + x^4)`

`sqrt(sin theta) = x/(1 + x^4)^(1/4)`

Putting this value in equation (1),

`I = - 1/sqrt(sin theta) + C`

`= ((1 + x^4)^(1/4))/x + C`

Hence, `int 1/(x^2(x^4 + 1)^(3/4)) dx `

`= - (1 + x^4)^(1//4)/x` + C

shaalaa.com

Solution 2

Let `I = int dx/(x^2 (x^4 + 1)^(3/4))`

`= dx/(x^5 (1 + 1/x^4)^(3/4))`

Put `1 + 1/x^4 = t`

⇒ `-4/x^5` dx = dt

∴ `I = -1/4 int dt/t^(3/4)`

`= -1/4 int^(-3/4)  dt`

`= -1/4 t^(1/4)/(1/4) + C`

`= -(t)^(1/4) + C`

`= - (1 + 1/x^4)^(1/4) + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.12 [Page 352]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.12 | Q 4 | Page 352

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Write the antiderivative of `(3sqrtx+1/sqrtx).`


Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`


 

Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`

 

Find an anti derivative (or integral) of the following function by the method of inspection.

(axe + b)2


Find an antiderivative (or integral) of the following function by the method of inspection.

sin 2x – 4 e3x


Find the following integrals:

`intx^2 (1 - 1/x^2)dx`


Find the following integrals:

`int (x^3 + 5x^2   -4)/x^2 dx`


Find the following integrals:

`int (x^3 + 3x + 4)/sqrtx dx`


Find the following integrals:

`int(1 - x) sqrtx dx`


Find the following integrals:

`intsqrtx( 3x^2 + 2x + 3) dx`


Find the following integrals:

`int(2x - 3cos x + e^x) dx`


Find the following integrals:

`int (2 - 3 sinx)/(cos^2 x) dx.`


The anti derivative of `(sqrtx + 1/ sqrtx)` equals:


Integrate the function:

`1/(x - x^3)`


Integrate the function:

`(e^(5log x) -  e^(4log x))/(e^(3log x) - e^(2log x))`


Integrate the function:

`1/(cos (x+a) cos(x+b))`


Integrate the function:

`e^x/((1+e^x)(2+e^x))`


Integrate the function:

f' (ax + b) [f (ax + b)]n


Integrate the function:

`1/sqrt(sin^3 x sin(x + alpha))`


Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`


Integrate the function:

`sqrt((1-sqrtx)/(1+sqrtx))`


Integrate the function:

`(2+ sin 2x)/(1+ cos 2x) e^x`


Integrate the function:

`(x^2 + x + 1)/((x + 1)^2 (x + 2))`


Integrate the function:

`tan^(-1) sqrt((1-x)/(1+x))`


Integrate the function:

`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`


Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .


`int (dx)/sqrt(9x - 4x^2)` equal


`int (xdx)/((x - 1)(x - 2))` equals


`int (dx)/(x(x^2 + 1))` equals


If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.


If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.


Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×