Advertisements
Advertisements
Question
Integrate the function:
`1/(x^2(x^4 + 1)^(3/4))`
Solution 1
Let I = `int 1/(x^2(x^4 + 1)^(3/4)` dx
put x = `sqrt(tan theta)`
`therefore dx = 1/2 (tan theta)^(1/2 - 1) * sec^2 theta d theta`
`= (sec^2 theta)/(2sqrt(tan theta))dθ`
`= int 1/(tan θ (tan^2 θ + 1)^(3/4)) * (sec^2 θ)/(2sqrt(tan θ))`dx
`= 1/2 int (sec^2 θ d θ)/(tan θ * sec^(3/2) θ * sqrt(tan θ))`
`= 1/2 int (sec^2 θ dθ)/((tan θ * sec θ)^(3/2))`
`= 1/2 int (sec^2 θ dθ)/((sin θ)/(cos θ) * sec θ)^(3/2)`
`= 1/2 int (sec^2 θ dθ)/(sin^(3/2) θ (sec^2θ)^(3/2))`
`therefore 1/2 int (sec^2 θ dθ)/(sin^(3/2) θ (sec^3 θ))`
`= 1/2 int (cos θ dθ)/(sin^(3/2) θ)`
Putting sin θ = t,
cos θ dθ = dt
`therefore I = 1/2 int dt/t^(3//2) = 1/2 int t^(-3/2)` dt
`= 1/2 (-2)t^(- 1/2) + C`
`= - 1/sqrtt + C`
`= - 1/sqrt(sin theta) + C`
Putting x = `sqrt(tan θ)`,
tan θ = x2
`therefore sin theta = x^2/sqrt(1 + x^4)`
`sqrt(sin theta) = x/(1 + x^4)^(1/4)`
Putting this value in equation (1),
`I = - 1/sqrt(sin theta) + C`
`= ((1 + x^4)^(1/4))/x + C`
Hence, `int 1/(x^2(x^4 + 1)^(3/4)) dx `
`= - (1 + x^4)^(1//4)/x` + C
Solution 2
Let `I = int dx/(x^2 (x^4 + 1)^(3/4))`
`= dx/(x^5 (1 + 1/x^4)^(3/4))`
Put `1 + 1/x^4 = t`
⇒ `-4/x^5` dx = dt
∴ `I = -1/4 int dt/t^(3/4)`
`= -1/4 int^(-3/4) dt`
`= -1/4 t^(1/4)/(1/4) + C`
`= -(t)^(1/4) + C`
`= - (1 + 1/x^4)^(1/4) + C`
APPEARS IN
RELATED QUESTIONS
Write the antiderivative of `(3sqrtx+1/sqrtx).`
Evaluate : `∫(sin^6x+cos^6x)/(sin^2x.cos^2x)dx`
Find :`int(x^2+x+1)/((x^2+1)(x+2))dx`
Find an anti derivative (or integral) of the following function by the method of inspection.
(axe + b)2
Find an antiderivative (or integral) of the following function by the method of inspection.
sin 2x – 4 e3x
Find the following integrals:
`intx^2 (1 - 1/x^2)dx`
Find the following integrals:
`int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals:
`int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals:
`int(1 - x) sqrtx dx`
Find the following integrals:
`intsqrtx( 3x^2 + 2x + 3) dx`
Find the following integrals:
`int(2x - 3cos x + e^x) dx`
Find the following integrals:
`int (2 - 3 sinx)/(cos^2 x) dx.`
The anti derivative of `(sqrtx + 1/ sqrtx)` equals:
Integrate the function:
`1/(x - x^3)`
Integrate the function:
`(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the function:
`1/(cos (x+a) cos(x+b))`
Integrate the function:
`e^x/((1+e^x)(2+e^x))`
Integrate the function:
f' (ax + b) [f (ax + b)]n
Integrate the function:
`1/sqrt(sin^3 x sin(x + alpha))`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the function:
`sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the function:
`(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the function:
`(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the function:
`tan^(-1) sqrt((1-x)/(1+x))`
Integrate the function:
`(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Find : \[\int\frac{\left( x^2 + 1 \right)\left( x^2 + 4 \right)}{\left( x^2 + 3 \right)\left( x^2 - 5 \right)}dx\] .
`int (dx)/sqrt(9x - 4x^2)` equal
`int (xdx)/((x - 1)(x - 2))` equals
`int (dx)/(x(x^2 + 1))` equals
If the normal to the curve y(x) = `int_0^x(2t^2 - 15t + 10)dt` at a point (a, b) is parallel to the line x + 3y = –5, a > 1, then the value of |a + 6b| is equal to ______.
If y = `x^((sinx)^(x^((sinx)^(x^(...∞)`, then `(dy)/(dx)` at x = `π/2` is equal to ______.
Anti-derivative of `(tanx - 1)/(tanx + 1)` with respect to x is ______.